114 research outputs found

    Robust Multi-Image HDR Reconstruction for the Modulo Camera

    Full text link
    Photographing scenes with high dynamic range (HDR) poses great challenges to consumer cameras with their limited sensor bit depth. To address this, Zhao et al. recently proposed a novel sensor concept - the modulo camera - which captures the least significant bits of the recorded scene instead of going into saturation. Similar to conventional pipelines, HDR images can be reconstructed from multiple exposures, but significantly fewer images are needed than with a typical saturating sensor. While the concept is appealing, we show that the original reconstruction approach assumes noise-free measurements and quickly breaks down otherwise. To address this, we propose a novel reconstruction algorithm that is robust to image noise and produces significantly fewer artifacts. We theoretically analyze correctness as well as limitations, and show that our approach significantly outperforms the baseline on real data.Comment: to appear at the 39th German Conference on Pattern Recognition (GCPR) 201

    Modeling Camera Effects to Improve Visual Learning from Synthetic Data

    Full text link
    Recent work has focused on generating synthetic imagery to increase the size and variability of training data for learning visual tasks in urban scenes. This includes increasing the occurrence of occlusions or varying environmental and weather effects. However, few have addressed modeling variation in the sensor domain. Sensor effects can degrade real images, limiting generalizability of network performance on visual tasks trained on synthetic data and tested in real environments. This paper proposes an efficient, automatic, physically-based augmentation pipeline to vary sensor effects --chromatic aberration, blur, exposure, noise, and color cast-- for synthetic imagery. In particular, this paper illustrates that augmenting synthetic training datasets with the proposed pipeline reduces the domain gap between synthetic and real domains for the task of object detection in urban driving scenes

    Modeling the Performance of Image Restoration From Motion Blur

    Full text link

    Chloro­bis­(naphthalen-1-yl)phosphane

    Get PDF
    In the title compound, C20H14ClP, the dihedral angle between the naphthyl rings is 81.77 (6)°. The crystal packing suggests weak π–π stacking inter­actions between the naphthyl rings in adjacent units [minimum ring centroid separation 3.7625 (13) Å]

    Improving Blind Spot Denoising for Microscopy

    Full text link
    Many microscopy applications are limited by the total amount of usable light and are consequently challenged by the resulting levels of noise in the acquired images. This problem is often addressed via (supervised) deep learning based denoising. Recently, by making assumptions about the noise statistics, self-supervised methods have emerged. Such methods are trained directly on the images that are to be denoised and do not require additional paired training data. While achieving remarkable results, self-supervised methods can produce high-frequency artifacts and achieve inferior results compared to supervised approaches. Here we present a novel way to improve the quality of self-supervised denoising. Considering that light microscopy images are usually diffraction-limited, we propose to include this knowledge in the denoising process. We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network. As a consequence, we are able to eliminate high-frequency artifacts and achieve self-supervised results that are very close to the ones achieved with traditional supervised methods.Comment: 15 pages, 4 figure

    Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data

    Full text link

    Deep Burst Denoising

    Full text link
    Noise is an inherent issue of low-light image capture, one which is exacerbated on mobile devices due to their narrow apertures and small sensors. One strategy for mitigating noise in a low-light situation is to increase the shutter time of the camera, thus allowing each photosite to integrate more light and decrease noise variance. However, there are two downsides of long exposures: (a) bright regions can exceed the sensor range, and (b) camera and scene motion will result in blurred images. Another way of gathering more light is to capture multiple short (thus noisy) frames in a "burst" and intelligently integrate the content, thus avoiding the above downsides. In this paper, we use the burst-capture strategy and implement the intelligent integration via a recurrent fully convolutional deep neural net (CNN). We build our novel, multiframe architecture to be a simple addition to any single frame denoising model, and design to handle an arbitrary number of noisy input frames. We show that it achieves state of the art denoising results on our burst dataset, improving on the best published multi-frame techniques, such as VBM4D and FlexISP. Finally, we explore other applications of image enhancement by integrating content from multiple frames and demonstrate that our DNN architecture generalizes well to image super-resolution

    A multi-wavelength polarimetric study of the blazar CTA 102 during a Gamma-ray flare in 2012

    Full text link
    We perform a multi-wavelength polarimetric study of the quasar CTA 102 during an extraordinarily bright γ\gamma-ray outburst detected by the {\it Fermi} Large Area Telescope in September-October 2012 when the source reached a flux of F>100 MeV=5.2±0.4×106_{>100~\mathrm{MeV}} =5.2\pm0.4\times10^{-6} photons cm2^{-2} s1^{-1}. At the same time the source displayed an unprecedented optical and NIR outburst. We study the evolution of the parsec scale jet with ultra-high angular resolution through a sequence of 80 total and polarized intensity Very Long Baseline Array images at 43 GHz, covering the observing period from June 2007 to June 2014. We find that the γ\gamma-ray outburst is coincident with flares at all the other frequencies and is related to the passage of a new superluminal knot through the radio core. The powerful γ\gamma-ray emission is associated with a change in direction of the jet, which became oriented more closely to our line of sight (θ\theta\sim1.2^{\circ}) during the ejection of the knot and the γ\gamma-ray outburst. During the flare, the optical polarized emission displays intra-day variability and a clear clockwise rotation of EVPAs, which we associate with the path followed by the knot as it moves along helical magnetic field lines, although a random walk of the EVPA caused by a turbulent magnetic field cannot be ruled out. We locate the γ\gamma-ray outburst a short distance downstream of the radio core, parsecs from the black hole. This suggests that synchrotron self-Compton scattering of near-infrared to ultraviolet photons is the probable mechanism for the γ\gamma-ray production.Comment: Accepted for publication in The Astrophysical Journa

    End-to-end Interpretable Learning of Non-blind Image Deblurring

    Get PDF
    Non-blind image deblurring is typically formulated as a linear least-squares problem regularized by natural priors on the corresponding sharp picture's gradients, which can be solved, for example, using a half-quadratic splitting method with Richardson fixed-point iterations for its least-squares updates and a proximal operator for the auxiliary variable updates. We propose to precondition the Richardson solver using approximate inverse filters of the (known) blur and natural image prior kernels. Using convolutions instead of a generic linear preconditioner allows extremely efficient parameter sharing across the image, and leads to significant gains in accuracy and/or speed compared to classical FFT and conjugate-gradient methods. More importantly, the proposed architecture is easily adapted to learning both the preconditioner and the proximal operator using CNN embeddings. This yields a simple and efficient algorithm for non-blind image deblurring which is fully interpretable, can be learned end to end, and whose accuracy matches or exceeds the state of the art, quite significantly, in the non-uniform case.Comment: Accepted at ECCV2020 (poster

    W2S: Microscopy Data with Joint Denoising and Super-Resolution for Widefield to SIM Mapping

    Full text link
    In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution on one side, and the integrity of the biological sample on the other side. To obtain clean high-resolution (HR) images, one can either use microscopy techniques, such as structured-illumination microscopy (SIM), or apply denoising and super-resolution (SR) algorithms. However, the former option requires multiple shots that can damage the samples, and although efficient deep learning based algorithms exist for the latter option, no benchmark exists to evaluate these algorithms on the joint denoising and SR (JDSR) tasks. To study JDSR on microscopy data, we propose such a novel JDSR dataset, Widefield2SIM (W2S), acquired using a conventional fluorescence widefield and SIM imaging. W2S includes 144,000 real fluorescence microscopy images, resulting in a total of 360 sets of images. A set is comprised of noisy low-resolution (LR) widefield images with different noise levels, a noise-free LR image, and a corresponding high-quality HR SIM image. W2S allows us to benchmark the combinations of 6 denoising methods and 6 SR methods. We show that state-of-the-art SR networks perform very poorly on noisy inputs. Our evaluation also reveals that applying the best denoiser in terms of reconstruction error followed by the best SR method does not necessarily yield the best final result. Both quantitative and qualitative results show that SR networks are sensitive to noise and the sequential application of denoising and SR algorithms is sub-optimal. Lastly, we demonstrate that SR networks retrained end-to-end for JDSR outperform any combination of state-of-the-art deep denoising and SR networksComment: ECCVW 2020. Project page: \<https://github.com/ivrl/w2s
    corecore